In this paper, we have considered surfaces with constant negative Gaussian curvature in the simply isotropic 3-Space by defined Sauer and Strubeckerr. Firstly, we have studied the isotropic II-flat, isotropic… Click to show full abstract
In this paper, we have considered surfaces with constant negative Gaussian curvature in the simply isotropic 3-Space by defined Sauer and Strubeckerr. Firstly, we have studied the isotropic II-flat, isotropic minimal and isotropic II-minimal, the constant second Gaussian curvature, and the constant mean curvature of surfaces with constant negative curvature (SCNC) in the simply isotropic 3-space. Surfaces with symmetry are obtained when the mean curvatures are equal. Further, we have investigated the constant Casorati, the tangential and the amalgamatic curvatures of SCNC.
               
Click one of the above tabs to view related content.