Spontaneous pattern formation by a large number of dislocations is commonly observed during the initial stages of metal fatigue under cyclic straining. It was experimentally found that the geometry of… Click to show full abstract
Spontaneous pattern formation by a large number of dislocations is commonly observed during the initial stages of metal fatigue under cyclic straining. It was experimentally found that the geometry of the dislocation pattern undergoes a crossover from a 2D spot-scattered pattern to a 1D ladder-shaped pattern as the amplitude of external shear strain increases. However, the physical mechanism that causes the crossover between different dislocation patterns remains unclear. In this study, we theorized a bifurcation diagram that explains the crossover between the two dislocation patterns. The proposed theory is based on a weakly nonlinear stability analysis that considers the mutual interaction of dislocations as a nonlinearity. It was found that the selection rule among the two dislocation patterns, “spotted” and “ladder-shaped”, can be described by inequalities with respect to nonlinearity parameters contained in the governing equations.
               
Click one of the above tabs to view related content.