In this paper, the emission sources of PM10 are characterised by analysing its trace elements (TE) and ions contents. PM10 samples were collected for a year (2019–2020) at five sites… Click to show full abstract
In this paper, the emission sources of PM10 are characterised by analysing its trace elements (TE) and ions contents. PM10 samples were collected for a year (2019–2020) at five sites and analysed. PM10 speciated data were analysed using graphical visualization, correlation analysis, generalised additive model (GAM), and positive matrix factorization (PMF). Annual average PM10 concentrations (µg/m3) were 304.68 ± 155.56 at Aziziyah, 219.59 ± 87.29 at Misfalah, 173.90 ± 103.08 at Abdeyah, 168.81 ± 82.50 at Askan, and 157.60 ± 80.10 at Sanaiyah in Makkah, which exceeded WHO (15 µg/m3), USEPA (50 µg/m3), and the Saudi Arabia national (80 µg/m3) annual air quality standards. A GAM model was developed using PM10 as a response and ions and TEs as predictors. Among the predictors Mg, Ca, Cr, Al, and Pb were highly significant (p < 0.01), Se, Cl, and NO2 were significant (p < 0.05), and PO4 and SO4 were significant (p < 0.1). The model showed R-squared (adj) 0.85 and deviance explained 88.1%. PMF identified four main emission sources of PM10 in Makkah: (1) Road traffic emissions (explained 51% variance); (2) Industrial emissions and mineral dust (explained 27.5% variance); (3) Restaurant and dwelling emissions (explained 13.6% variance); and (4) Fossil fuel combustion (explained 7.9% variance).
               
Click one of the above tabs to view related content.