LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions

Photo from wikipedia

We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing… Click to show full abstract

We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and “dry puffs”. The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users. Studies testing the devices under reasonable approximation to realistic conditions detected levels of all organic byproducts that are either negligible or orders of magnitude lower than in tobacco smoke. Our review reinforces the pressing need to update and improve current laboratory standards by an appropriate selection of testing parameters and the logistical incorporation of end users in the experimental design.

Keywords: critical review; review; aerosol emissions; literature; organic byproducts; cigarette aerosol

Journal Title: Toxics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.