LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Trihalomethane Cancer Risk Assessment for Private and Shared Residences: Addressing the Differences in Inhalation Exposure

Photo from wikipedia

The multi-pathway cancer risk (CR) assessment of trihalomethanes (THM) involves considering exposure via ingestion, dermal contact, and inhalation. Inhalation occurs during showering due to the volatilization of THMs from chlorinated… Click to show full abstract

The multi-pathway cancer risk (CR) assessment of trihalomethanes (THM) involves considering exposure via ingestion, dermal contact, and inhalation. Inhalation occurs during showering due to the volatilization of THMs from chlorinated water to the air. When assessing inhalation risks, exposure models commonly assume that the initial THM concentration in the shower room is zero. However, this assumption is only valid in private shower rooms where single or infrequent showering events take place. It fails to account for continuous or successive showering events in shared showering facilities. To address this issue, we incorporated the accumulation of THM in the shower room air. We studied a community (population ≈ 20,000) comprising two types of residences with the same water supply: population A with private shower rooms, and population B with communal shower stalls. The total THM concentration in the water was 30.22 ± 14.45 µg L−1. For population A, the total CR was 58.5 × 10−6, including an inhalation risk of 1.11 × 10−6. However, for population B, the accumulation of THM in the shower stall air resulted in increased inhalation risk. By the tenth showering event, the inhalation risk was 2.2 × 10−6, and the equivalent total CR was 59.64 × 10−6. We found that the CR significantly increased with increasing shower duration. Nevertheless, introducing a ventilation rate of 5 L s−1 in the shower stall reduced the inhalation CR from 1.2 × 10−6 to 7.9 × 10−7.

Keywords: shower; risk; cancer risk; risk assessment; inhalation; exposure

Journal Title: Toxics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.