Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for… Click to show full abstract
Snakebite envenoming is a pathological condition which may occur in response to the injection of venom. Snake venoms contain a complex mixture of biologically active molecules which are responsible for a broad spectrum of clinical manifestations, ranging from local tissue injuries to fatal complications. Snake venom administration commonly provokes local tissue injury often associated with systemic effects, including neurotoxic and cardiotoxic manifestations, bleeding, acute kidney injury, and rhabdomyolysis. An important spectrum of pathogenesis of snake envenomation is the generation of reactive oxygen species (ROS), which can directly provoke tissue damage and also potentiate the deleterious consequences of inflammation at the bite site. Snake venom components known to induce oxidative stress include phospholipases A2, metalloproteinases, three-finger toxins, and L-amino acid oxidase. Clear evidence is mounting suggesting that inflammation and oxidative stress participate in the destructive effects of envenoming, including acute renal failure, tissue necrosis, and unusual susceptibility to bleed (hemorrhage), mostly due to hypocoagulability, neuro/cardio toxicity, and myonecrosis. Impaired regulation of oxidative stress may also set the stage for secondary/long-term complications of snakebite envenomation such as musculoskeletal disabilities. Some aspects of natural antioxidant therapeutic options are discussed in this review.
               
Click one of the above tabs to view related content.