LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neutrino Emissivity in the Quark-Hadron Mixed Phase

Photo from wikipedia

In this work we investigate the effect a crystalline quark–hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic… Click to show full abstract

In this work we investigate the effect a crystalline quark–hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor Nambu–Jona–Lasinio model for quark matter. Next we determine the extent of the quark–hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally, we calculate the neutrino emissivity due to electron–lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark–hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (≲10 9 K) and quark fractions (≲30%), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions. There are a number of open issues that need to be addressed in a future study on the neutrino emission rates caused by electron–quark blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed in the summary section of this paper. We hope this paper will stimulate studies addressing these issues.

Keywords: phase; quark hadron; mixed phase; quark; neutrino emissivity; hadron mixed

Journal Title: Universe
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.