LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-Homology of Differential Forms and Feynman Diagrams

Photo from academic.microsoft.com

In the present review we provide an extensive analysis of the intertwinement between Feynman integrals and cohomology theories in light of recent developments. Feynman integrals enter in several perturbative methods… Click to show full abstract

In the present review we provide an extensive analysis of the intertwinement between Feynman integrals and cohomology theories in light of recent developments. Feynman integrals enter in several perturbative methods for solving non-linear PDE, starting from Quantum Field Theories and including General Relativity and Condensed Matter Physics. Precision calculations involve several loop integrals and an onec strategy to address, which is to bring them back in terms of linear combinations of a complete set of integrals (the master integrals). In this sense Feynman integrals can be thought as defining a sort of vector space to be decomposed in term of a basis. Such a task may be simpler if the vector space is endowed with a scalar product. Recently, it has been discovered that, if these spaces are interpreted in terms of twisted cohomology, the role of a scalar product is played by intersection products. The present review is meant to provide the mathematical tools, usually familiar to mathematicians but often not in the standard baggage of physicists, such as singular, simplicial and intersection (co)homologies, and hodge structures, that are apt to restate this strategy on precise mathematical grounds. It is intended to be both an introduction for beginners interested in the topic, as well as a general reference providing helpful tools for tackling the several still-open problems.

Keywords: differential forms; homology differential; forms feynman; feynman integrals; feynman diagrams

Journal Title: Universe
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.