LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hints for a Gravitational Transition in Tully–Fisher Data

Photo from wikipedia

We use an up-to-date compilation of Tully–Fisher data to search for transitions in the evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at ≈3σ level… Click to show full abstract

We use an up-to-date compilation of Tully–Fisher data to search for transitions in the evolution of the Tully–Fisher relation. Using an up-to-date data compilation, we find hints at ≈3σ level for a transition at critical distances Dc≃9 Mpc and Dc≃17 Mpc. We split the full sample in two subsamples, according to the measured galaxy distance with respect to splitting distance Dc, and identify the likelihood of the best-fit slope and intercept of one sample with respect to the best-fit corresponding values of the other sample. For Dc≃9 Mpc and Dc≃17 Mpc, we find a tension between the two subsamples at a level of Δχ2>17(3.5σ). Using Monte Carlo simulations, we demonstrate that this result is robust with respect to random statistical and systematic variations of the galactic distances and is unlikely in the context of a homogeneous dataset constructed using the Tully–Fisher relation. If the tension is interpreted as being due to a gravitational strength transition, it would imply a shift in the effective gravitational constant to lower values for distances larger than Dc by ΔGG≃−0.1. Such a shift is of the anticipated sign and magnitude but at a somewhat lower distance (redshift) than the gravitational transition recently proposed to address the Hubble and growth tensions (ΔGG≃−0.1 at the transition redshift of zt≲0.01 (Dc≲40 Mpc)).

Keywords: fisher data; transition; hints gravitational; transition tully; gravitational transition; tully fisher

Journal Title: Universe
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.