LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Higher Dimensional Lie Algebroid Sigma Model with WZ Term

Photo by pawel_czerwinski from unsplash

We generalize the (n+1)-dimensional twisted R-Poisson topological sigma model with flux on a target Poisson manifold to a Lie algebroid. Analyzing the consistency of constraints in the Hamiltonian formalism and… Click to show full abstract

We generalize the (n+1)-dimensional twisted R-Poisson topological sigma model with flux on a target Poisson manifold to a Lie algebroid. Analyzing the consistency of constraints in the Hamiltonian formalism and the gauge symmetry in the Lagrangian formalism, geometric conditions of the target space to make the topological sigma model consistent are identified. The geometric condition is an universal compatibility condition of a Lie algebroid with a multisymplectic structure. This condition is a generalization of the momentum map theory of a Lie group and is regarded as a generalization of the momentum section condition of the Lie algebroid.

Keywords: lie algebroid; condition; lie; sigma model

Journal Title: Universe
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.