LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasma Membrane-Derived Liposomes Exhibit Robust Antiviral Activity against HSV-1

Photo from wikipedia

Plasma membranes host a plethora of proteins and glycans on their outer surface that are exploited by viruses to enter the cells. In this study, we have utilized this property… Click to show full abstract

Plasma membranes host a plethora of proteins and glycans on their outer surface that are exploited by viruses to enter the cells. In this study, we have utilized this property to limit a viral infection using plasma membrane-derived vesicles. We show that plasma membrane-derived liposomes are prophylactically and therapeutically competent at preventing herpes simplex virus type-1 (HSV-1) infection. Plasma membrane liposomes derived from human corneal epithelial (HCE) cells, which are natural targets of HSV-1 infection, as well as Vero and Chinese hamster ovary (CHO) cells were used in this study. Our study clearly demonstrates that HCE and Vero-derived cellular liposomes, which express the viral entry-specific cell surface protein receptors, exhibit robust antiviral activity especially when compared to CHO-derived liposomes, which lack the relevant HSV-1 entry receptors. Further experimentation of the plasma membrane-derived liposomes with HSV type-2 (HSV-2) and pseudorabies virus yielded similar results, indicating strong potential for the employment of these liposomes to study viral entry mechanisms in a cell free-environment.

Keywords: exhibit robust; hsv; membrane derived; derived liposomes; membrane; plasma membrane

Journal Title: Viruses
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.