LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential Pathogenesis of SARS-CoV-2 Variants of Concern in Human ACE2-Expressing Mice

Photo from wikipedia

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in millions of deaths worldwide. Increasingly contagious variants of concern (VoC) have fueled recurring global infection waves. A… Click to show full abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in millions of deaths worldwide. Increasingly contagious variants of concern (VoC) have fueled recurring global infection waves. A major question is the relative severity of disease caused by the previous and currently circulating variants of SARS-CoV-2. In this study, we evaluated the pathogenesis of SARS-CoV-2 variants in human ACE-2-expressing (K18-hACE2) mice. Eight-week-old K18-hACE2 mice were inoculated intranasally with a representative virus from the original B.1 lineage, or the emerging B.1.1.7 (alpha), B.1.351 (beta), B.1.617.2 (delta) or B.1.1.529 (omicron) lineages. We also infected a group of mice with the mouse-adapted SARS-CoV-2 (MA10). Our results demonstrate that B.1.1.7, B.1.351 and B.1.617.2 viruses are significantly more lethal than B.1 strain in K18-hACE2 mice. Infection with B.1.1.7, B.1.351 and B.1.617.2 variants resulted in significantly higher virus titers in the lungs and brain of mice compared to the B.1 virus. Interestingly, mice infected with the B.1.1.529 variant exhibited less severe clinical signs and high survival rate. We found that B.1.1.529 replication was significantly lower in the lungs and brain of infected mice in comparison to other VoC. Transcription levels of cytokines and chemokines in the lungs of the B.1.1.529-infected mice were significantly less when compared to those challenged with the B.1.1.7 virus. Together, our data provide insights into the pathogenesis of the previous and circulating SARS-CoV-2 VoC in mice.

Keywords: cov variants; pathogenesis sars; variants concern; mice; sars cov

Journal Title: Viruses
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.