LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biological and Molecular Characterization of the Lytic Bacteriophage SoKa against Pseudomonas syringae pv. syringae, Causal Agent of Citrus Blast and Black Pit in Tunisia

Photo by jaanus from unsplash

Pseudomonas syringae pv. syringae (Pss), the causal agent of citrus blast and black pit lesion of lemon fruit, continues to cause serious damage in citrus production in Tunisia. Faced with… Click to show full abstract

Pseudomonas syringae pv. syringae (Pss), the causal agent of citrus blast and black pit lesion of lemon fruit, continues to cause serious damage in citrus production in Tunisia. Faced with the rapid emergence of the disease and the inefficiency of conventional control methods, an alternative strategy based on the use of bacteriophages was pursued in this study. The lytic Pss bacteriophage SoKa was isolated from soil collected from Tunisian citrus orchards. Analysis of the host range showed that SoKa was able to lyse seven other Pss strains. Interestingly, Pseudomonas syringae pv. porri, pathogenic to leek, could also be infected by SoKa. The activity of SoKa was maintained at pH values between 2 and 10, at temperatures between −80 and 37 °C; the phage could resist UV radiation at an intensity of 320 nm up to 40 min. Whole genome sequencing revealed that the Pseudomonas phage SoKa is a novel phage that belongs to the Bifseptvirus genus of the Autographiviridae family. The absence of virulence proteins and lysogeny-associated proteins encoded on the phage genome, its anti-biofilm activity, and the significant reduction of tissue necrosis in different fruit bioassays make SoKa potentially suitable for use in phage biocontrol.

Keywords: pseudomonas syringae; soka; syringae syringae; citrus; phage

Journal Title: Viruses
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.