LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the Immunogenicity of RBD Protein Variants through Amino Acid E484 Mutation in SARS-CoV-2

Photo from wikipedia

In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness of vaccines currently in… Click to show full abstract

In the context of the COVID-19 pandemic, conducting antibody testing and vaccination is critical. In particular, the continued evolution of SARS-CoV-2 raises concerns about the effectiveness of vaccines currently in use and the activity of neutralizing antibodies. Here, we used the Escherichia coli expression system to obtain nine different SARS-CoV-2 RBD protein variants, including six single-point mutants, one double-point mutant, and two three-point mutants. Western blotting results show that nine mutants of the RBD protein had strong antigenic activity in vitro. The immunogenicity of all RBD proteins was detected in mice to screen for protein mutants with high immunogenicity. The results show that the mutants E484K, E484Q, K417T-E484K-N501Y, and K417N-E484K-N501Y, especially the former two, had better immunogenicity than the wild type. This suggests that site E484 has a significant impact on the function of the RBD protein. Our results demonstrate that recombinant RBD protein expressed in E. coli can be an effective tool for the development of antibody detection methods and vaccines.

Keywords: rbd protein; immunogenicity; protein variants; sars cov; protein

Journal Title: Viruses
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.