LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Structural Identifiability of a Humidity-Driven Epidemiological Model of Influenza Transmission

Photo by bernardhermant from unsplash

Influenza epidemics cause considerable morbidity and mortality every year worldwide. Climate-driven epidemiological models are mainstream tools to understand seasonal transmission dynamics and predict future trends of influenza activity, especially in… Click to show full abstract

Influenza epidemics cause considerable morbidity and mortality every year worldwide. Climate-driven epidemiological models are mainstream tools to understand seasonal transmission dynamics and predict future trends of influenza activity, especially in temperate regions. Testing the structural identifiability of these models is a fundamental prerequisite for the model to be applied in practice, by assessing whether the unknown model parameters can be uniquely determined from epidemic data. In this study, we applied a scaling method to analyse the structural identifiability of four types of commonly used humidity-driven epidemiological models. Specifically, we investigated whether the key epidemiological parameters (i.e., infectious period, the average duration of immunity, the average latency period, and the maximum and minimum daily basic reproductive number) can be uniquely determined simultaneously when prevalence data is observable. We found that each model is identifiable when the prevalence of infection is observable. The structural identifiability of these models will lay the foundation for testing practical identifiability in the future using synthetic prevalence data when considering observation noise. In practice, epidemiological models should be examined with caution before using them to estimate model parameters from epidemic data.

Keywords: transmission; structural identifiability; identifiability; driven epidemiological; humidity driven; model

Journal Title: Viruses
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.