Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of… Click to show full abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
               
Click one of the above tabs to view related content.