Tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control… Click to show full abstract
Tilapia lake virus (TiLV) is a novel RNA virus that has been causing substantial economic losses across the global tilapia industry. Despite extensive research on potential vaccines and disease control methods, the understanding of this viral infection and the associated host cell responses remains incomplete. In this study, the involvement of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in the early stages of TiLV infection was investigated. The results showed a distinct pattern of ERK phosphorylation (p-ERK) upon TiLV infection in two fish cell lines, E-11 and TiB. Specifically, the p-ERK levels in the TiB cells decreased substantially, while the p-ERK levels in the E-11 cells remained constant. Interestingly, a large number of cytopathic effects were observed in the infected E-11 cells but none in the infected TiB cells. Furthermore, when p-ERK was suppressed using the inhibitor PD0325901, a significant reduction in the TiLV load and decrease in the mx and rsad2 gene expression levels were observed in the TiB cells in days 1–7 following infection. These findings highlight the role of the MAPK/ERK signalling pathway and provide new insights into the cellular mechanisms during TiLV infection that could be useful in developing new strategies to control this virus.
               
Click one of the above tabs to view related content.