LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insights into Photothermally Enhanced Photocatalytic U(VI) Extraction by a Step-Scheme Heterojunction

Photo by omarprestwich from unsplash

In this work, a CdS/BiVO4 step-scheme (S-scheme) heterojunction with self-photothermally enhanced photocatalytic effect was synthesized and applied for efficient U(VI) photoextraction. Characterizations such as transient absorption spectroscopy and Tafel test… Click to show full abstract

In this work, a CdS/BiVO4 step-scheme (S-scheme) heterojunction with self-photothermally enhanced photocatalytic effect was synthesized and applied for efficient U(VI) photoextraction. Characterizations such as transient absorption spectroscopy and Tafel test together confirmed the formation of S-scheme heterojunctions, which allows CdS/BiVO4 to avoid photocorrosion while retaining the strong reducing capacity of CdS and the oxidizing capacity of BiVO4. Experimental results such as radical quenching experiments and electron spin resonance show that U(VI) is rapidly oxidized by photoholes/•OH to insoluble UO2(OH)2 after being reduced to U(IV) by photoelectrons/•O2−, which precisely avoids the depletion of electron sacrificial agents. The rapid recombination of electron-hole pairs triggered by the S-scheme heterojunction is found to release large amounts of heat and accelerate the photocatalysis. This work offers a new enhanced strategy for photocatalytic uranium extraction and presents a direction for the design and development of new photocatalysts.

Keywords: photothermally enhanced; heterojunction; step scheme; enhanced photocatalytic; scheme heterojunction

Journal Title: Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.