LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heterostructure-Engineered Semiconductor Quantum Dots toward Photocatalyzed-Redox Cooperative Coupling Reaction

Photo from wikipedia

Semiconductor quantum dots have been emerging as one of the most ideal materials for artificial photosynthesis. Here, we report the assembled ZnS-CdS hybrid heterostructure for efficient coupling cooperative redox catalysis… Click to show full abstract

Semiconductor quantum dots have been emerging as one of the most ideal materials for artificial photosynthesis. Here, we report the assembled ZnS-CdS hybrid heterostructure for efficient coupling cooperative redox catalysis toward the oxidation of 1-phenylethanol to acetophenone/2,3-diphenyl-2,3-butanediol (pinacol) integrated with the reduction of protons to H2. The strong interaction and typical type-I band-position alignment between CdS quantum dots and ZnS quantum dots result in efficient separation and transfer of electron-hole pairs, thus distinctly enhancing the coupled photocatalyzed-redox activity and stability. The optimal ZnS-CdS hybrid also delivers a superior performance for various aromatic alcohol coupling photoredox reaction, and the ratio of electrons and holes consumed in such redox reaction is close to 1.0, indicating a high atom economy of cooperative coupling catalysis. In addition, by recycling the scattered light in the near field of a SiO2 sphere, the SiO2-supported ZnS-CdS (denoted as ZnS-CdS/SiO2) catalyst can further achieve a 3.5-fold higher yield than ZnS-CdS hybrid. Mechanistic research clarifies that the oxidation of 1-phenylethanol proceeds through the pivotal radical intermediates of •C(CH3)(OH)Ph. This work is expected to promote the rational design of semiconductor quantum dots-based heterostructured catalysts for coupling photoredox catalysis in organic synthesis and clean fuels production.

Keywords: semiconductor quantum; zns cds; quantum dots; redox

Journal Title: Research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.