Background: Childhood acute lymphoblastic leukemia (ALL) explains 26% of pediatricmalignancies and is one of the leading causes of disease-related deaths in children. A novelmolecular class of non-coding genes, long non-coding… Click to show full abstract
Background: Childhood acute lymphoblastic leukemia (ALL) explains 26% of pediatricmalignancies and is one of the leading causes of disease-related deaths in children. A novelmolecular class of non-coding genes, long non-coding RNAs (lncRNAs) having over 200nucleotides, have been defined as regulators of different cellular processes including pluripotency,oncogenesis, and transcription. It has been demonstrated that lncRNA transcription profilescan distinguish pre B-cell subtype of ALL accurately and act as early diagnostic and prognosticbiomarkers. Hence, the aim of this pilot study was the prior evaluation of expression profileof several lncRNA candidates including RP11-68I18.10, RP11-624C23.1, RP11-446E9, RP11-137H2.4, and RP11-203E8 in patients with ALL. Methods: In this study, 80 blood samples were obtained from patients, definitely diagnosed bypathologists with ALL, and from healthy subjects. Total RNA was extracted from blood samples,and cDNA was synthesized. Real-time PCR was applied to determine the expression of lncRNAs.A P-value of 0.010 was considered statistically significant. Results: Our findings revealed that the expression levels of lncRNAs RP11-624C23.1, RP11-446E9, RP11-137H2.4, RP11-68I18.10, and RP11-203E8 were significantly decreased in ALLsamples compared to those of healthy samples (P<0.0001, P =0.0616, P =0.0292, P<0.0001, andP = 0.0007). Moreover, the relationship between these five lncRNA expression changes and theimmunophenotype in ALL patients was not significant. Conclusion: The dysregulation of lncRNAs in ALL samples could provide a novel and interestingpossibility for early diagnosis and prognosis, as well as mastering the treatment of ALL.
               
Click one of the above tabs to view related content.