LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generation of dislocation clusters at triple junctions of random angle grain boundaries during cast growth of silicon ingots

Photo from wikipedia

Three-dimensional distribution of grain boundaries (GBs) and generation sources of dislocation clusters is examined in a cast-grown high-performance multicrystalline silicon ingot for commercial solar cells. A significant number of dislocations… Click to show full abstract

Three-dimensional distribution of grain boundaries (GBs) and generation sources of dislocation clusters is examined in a cast-grown high-performance multicrystalline silicon ingot for commercial solar cells. A significant number of dislocations are generated nearby some triple junctions of random angle GBs, although it is believed that such non-coherent GBs would not induce large strain during the cast growth. This explosive generation of dislocations would take place when the triple junctions are interacted with multiple Σ3{111} GBs. A segment of the random angle GB connected with a pair of Σ3{111} GBs nearby the triple junction would act as a dislocation source.

Keywords: random angle; generation; dislocation clusters; grain boundaries; triple junctions

Journal Title: Applied Physics Express
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.