LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

L-Ascorbic acid modulates the cytotoxic and genotoxic effects of salinity in barley meristem cells by regulating mitotic activity and chromosomal aberrations

Photo from wikipedia

The objective of the present study was to with all details explain of the efficiency of L-ascorbic acid (L-AsA) also known as vitamin C on cytotoxicity and genotoxicity induced by… Click to show full abstract

The objective of the present study was to with all details explain of the efficiency of L-ascorbic acid (L-AsA) also known as vitamin C on cytotoxicity and genotoxicity induced by salt stress in the barley apical meristems. As a result of the statistical analysis salt stress caused a significant (P ≤ 0.05) decrease in mitotic index of barley seeds depending on concentration increase, while the frequency of chromosomal aberration (CA) increased. In addition, it was determined that mitotic index value was decreased by 46% with 1 μM L-AsA supplementation as compared to control and chromosomal abnormalities were increased by 8.96% as well as. However, in the case of simultaneously application of 1 μM L-AsA and different salt concentrations, the high salt concentrations exhibited an excellent success according to low salt concentrations in alleviating the mitodepressive effect of salt stress. Moreover, the frequency of chromosomal aberrations in the root meristem cells of those seeds with 1 μM L-AsA supplementation germinated at different salt concentrations was substantially reduced compared to own control group (alone 1 μM L-AsA pretreatment). The 1 μM L-AsA pretreatment at the highest salt concentration (at 0.40 M) was showed an excellent success by reducing the frequency of the chromosomal aberrations by approximately 90 %. Different salt concentrations and/or 1 μM L-AsA supplementation caused micronuclei and granulation as well as various chromosomal aberrations in prophase, metaphase, anaphase and telophase.

Keywords: barley; salt concentrations; meristem cells; ascorbic acid; chromosomal aberrations; salt

Journal Title: Caryologia
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.