Initially developed as a rapid prototyping tool for project visualization and validation, the recent development of additive manufacturing (AM) technologies has led to the transition from rapid prototyping to rapid… Click to show full abstract
Initially developed as a rapid prototyping tool for project visualization and validation, the recent development of additive manufacturing (AM) technologies has led to the transition from rapid prototyping to rapid manufacturing. As a consequence, increased attention has to be paid to the mechanical, chemical and physical properties of the printed materials. In mechanical engineering, the widespread use of AM technologies requires the optimization of process parameters and material properties in order to obtain components with high, repeatable and time-stable mechanical properties. One of the main problems in this regard is the anisotropic behavior of components made by additive manufacturing, determined by the type of material, the 3D printing technology, the process parameters and the position of the components in the printing space. In this paper the influence of the printing orientation angle on the tensile behavior of specimens made by material jetting is investigated. The aim was to determine if the positioning of components at different angles relative to the X-axis of the printer (and implicitly in relation to the multijet printing head) contributes to anisotropic behavior. The material used was a photopolymer with a mechanical strength between 40 MPa and 55 MPa, according to the producer. Four sets of tensile test specimens were manufactured, using flat build orientation and positioned on the printing table at angles of 0˚, 30˚, 60˚ and 90˚ to the X-axis of the printer. Comparative analysis of the mechanical behavior was carried out by tensile tests and microscopic investigations of the tensile test specimens fracture surfaces.
               
Click one of the above tabs to view related content.