The objective was to study the correlation between the mathematical form of a chemical that we want to lower its initial concentration by the regressive method and the purging of… Click to show full abstract
The objective was to study the correlation between the mathematical form of a chemical that we want to lower its initial concentration by the regressive method and the purging of the body�s toxic present chemicals that need to be eliminated. We developed a chemical model, by which, to a given volume, with a certain (X - concentration %) dissolved substance in a container, the initial solvent, without solvit, is added (concentration 0%) with an equal rhythm to the one that is lost from the used container. The solution that will be lost will contain less and less concentrations of solvit, compared to the initial value X%. At the same time, the concentration of our chemical model will decrease. We applied a regressive mathematical formula to this model in order to calculate the concentration in the container in each moment. At the same time, we conducted treatment sessions in patients in which certain substances need to be eliminated, a procedure that complies with the described chemical model. We have demonstrated that at the same volume of 0% solvit wash, the substance purging with X% concentration is more effective, if the procedure starts with an initial loss of concentrated substance, with ulterior volume replacement. Laboratory data confirms the mathematical model in patients who started the procedure with plasma loss. The developed chemical model demonstrates that the initial loss of substance, hastens the decrease of the initial concentration, especially as the loss is higher at the beginning of the procedure if we use the same replacement volume without the substance in the initial solution. This model can be applied in plasma treatment methods in order to study the patient�s safety and the amount of plasma the patient can lose at the beginning.
               
Click one of the above tabs to view related content.