BACKGROUND Choledocholithiasis is a severe disorder that affects a significant portion of the world’s population. Treatment using endoscopic sphincterotomy (EST) has become widespread; however, recurrence post-EST is relatively common. The… Click to show full abstract
BACKGROUND Choledocholithiasis is a severe disorder that affects a significant portion of the world’s population. Treatment using endoscopic sphincterotomy (EST) has become widespread; however, recurrence post-EST is relatively common. The bile microbiome has a profound influence on the recurrence of choledocholithiasis in patients after EST; however, the key pathogens and their functions in the biliary tract remain unclear. AIM To investigate the biliary microbial characteristics of patients with recurrent choledocholithiasis post-EST, using next-generation sequencing. METHODS This cohort study included 43 patients, who presented with choledocholithiasis at the Guangdong Second Provincial General Hospital between May and June 2020. The patients had undergone EST or endoscopic papillary balloon dilation and were followed up for over a year. They were divided into either the stable or recurrent groups. We collected bile samples and extracted microbial DNA for analysis through next-generation sequencing. Resulting sequences were analyzed for core microbiome and statistical differences between the diagnosis groups; they were examined using the Kyoto Encyclopedia of Genes and Genomes pathway hierarchy level using analysis of variance. Correlation between the key genera and metabolic pathways in bile, were analyzed using Pearson’s correlation test. RESULTS The results revealed distinct clustering of biliary microbiota in recurrent choledocholithiasis. Higher relative abundances (RAs) of Fusobacterium and Neisseria (56.61% ± 14.81% vs 3.47% ± 1.10%, 8.95% ± 3.42% vs 0.69% ± 0.32%, respectively) and the absence of Lactobacillus were observed in the bile of patients with recurrent disease, compared to that in stable patients. Construction of a microbiological co-occurrence network revealed a mutual relationship among Fusobacterium, Neisseria, and Leptotrichia, and an antagonistic relationship among Lactobacillales, Fusobacteriales, and Clostridiales. Functional prediction of biliary microbiome revealed that the loss of transcription and metabolic abilities may lead to recurrent choledocholithiasis. Furthermore, the prediction model based on the RA of Lactobacillales in the bile was effective in identifying the risk of recurrent choledocholithiasis (P = 0.03). CONCLUSION We demonstrated differences in the bile microbiome of patients with recurrent choledocholithiasis compared to that in patients with stable disease, thereby adding to the current knowledge on its microbiologic etiology.
               
Click one of the above tabs to view related content.