LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

Photo from academic.microsoft.com

One-dimensional (1D) SnO2 sub-wavelength waveguides are a critical contribution to advanced optoelectronics. Further understanding of the surface defects and role of morphology in 1D SnO2 nanowires can help to better… Click to show full abstract

One-dimensional (1D) SnO2 sub-wavelength waveguides are a critical contribution to advanced optoelectronics. Further understanding of the surface defects and role of morphology in 1D SnO2 nanowires can help to better utilize these nanostructures more efficiently. For this purpose, three different nanowires (NWs), namely belts, cylindrical- and square-shaped structures were grown using SnO2 quantum dots as a precursor material. The growth process of these NWs is discussed. The nanobelts were observed to grow up to 3 mm in length. Morphological and structural studies of the nanostructures were also carried out. All NWs showed waveguide behavior with visible photoluminescence (PL) upon excitation with a 325 nm laser. This behavior was also demonstrated in tapered and surface-functionalized SnO2 NWs. While the tapered waveguide can allow for easy focusing of light, the simple surface chemistry offers selective light propagation by tuning the luminescence. Defect-related PL in NWs is studied using temperature-dependent measurements and a band diagram is proposed.

Keywords: sub wavelength; wavelength waveguide; waveguide properties; surface functionalized; properties surface; functionalized sno2

Journal Title: Beilstein Journal of Nanotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.