LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp.

Photo by curology from unsplash

Exploration of rhizobacteria of the genus Burkholderia as an under-tapped resource of bioactive molecules resulted in the isolation of two new antimicrobial 2-alkyl-4-quinolones. (E)-2-(Hept-2-en-1-yl)quinolin-4(1H)-one (1) and (E)-2-(non-2-en-1-yl)quinolin-4(1H)-one (3) were isolated… Click to show full abstract

Exploration of rhizobacteria of the genus Burkholderia as an under-tapped resource of bioactive molecules resulted in the isolation of two new antimicrobial 2-alkyl-4-quinolones. (E)-2-(Hept-2-en-1-yl)quinolin-4(1H)-one (1) and (E)-2-(non-2-en-1-yl)quinolin-4(1H)-one (3) were isolated from the culture broth of strain MBAF1239 together with four known alkylquinolones (2 and 4–6), pyrrolnitrin (7), and BN-227 (8). The structures of 1 and 3 were unambiguously characterized using NMR spectroscopy and mass spectrometry. Compounds 1–8 inhibited the growth of the marine bacterium Tenacibaculum maritimum, an etiological agent of skin ulcers in marine fish, offering new opportunities to develop antibacterial drugs for fish farming.

Keywords: tenacibaculum maritimum; two new; skin; genus burkholderia; new alkylquinolones

Journal Title: Beilstein Journal of Organic Chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.