The development of peptide stapling techniques to stabilise α-helical secondary structure motifs of peptides led to the design of modulators of protein–protein interactions, which had been considered undruggable for a… Click to show full abstract
The development of peptide stapling techniques to stabilise α-helical secondary structure motifs of peptides led to the design of modulators of protein–protein interactions, which had been considered undruggable for a long time. We disclose a novel approach towards peptide stapling utilising macrocyclisation by late-stage Suzuki–Miyaura cross-coupling of bromotryptophan-containing peptides of the catenin-binding domain of axin. Optimisation of the linker length in order to find a compromise between both sufficient linker rigidity and flexibility resulted in a peptide with an increased α-helicity and enhanced binding affinity to its native binding partner β-catenin. An increased proteolytic stability against proteinase K has been demonstrated.
               
Click one of the above tabs to view related content.