LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Compact quasi continuous pumped Nd: YAG Q-switched solid laser

Photo from academic.microsoft.com

A compact end-pumped Electro-optical Q-switched Nd:YAG laser was designed in this paper. In order to achieve compact construction, laser diode arrays(LDAs) with collimated fast axes were used as pumping source.… Click to show full abstract

A compact end-pumped Electro-optical Q-switched Nd:YAG laser was designed in this paper. In order to achieve compact construction, laser diode arrays(LDAs) with collimated fast axes were used as pumping source. A spherical lens with a focal length of 40 mm and a cylinder lens with focal length of 25 mm were used as a group for the coupling lens. The LDAs' beam profiles on the incident and exit faces were calculated using Tracepro software. The simulation results indicate that when taking a Φ 6 mm×30 mm Nd:YAG with a doping concentration of 1.0at.% as the gain medium, the spots on the incident and exit faces were 5 mm(slow-axis)×4.5 mm(fast-axis) and 3 mm(slow-axis)×6 mm(fast-axis), respectively, and the absorption pumping power was about 83%. Dynamic temperature field distributions of Nd:YAG larer in 360 s at 22℃ and 60℃ were simulated by Ansys software. Output pulsed energy of 30 mJ and 25 mJ were achieved while the repetition frequencies were 30 Hz and 50 Hz, corresponding to a slope efficiency of 11.6% and 14.71%. The pulse durations were 18 ns and 16 ns, respectively. The experimental results show that the designed compact laser in this paper can achieve stable pulse laser output.

Keywords: laser; yag switched; continuous pumped; compact quasi; quasi continuous; pumped yag

Journal Title: Chinese Optics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.