LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of various red phosphorescent dopants in single emissive white phosphorescent organic light-emitting devices

Photo by mymind from unsplash

In order to realize single emissive white phosphorescent organic light-emitting devices (PHOLEDs) with three color phosphorescent dopants (red, green, and blue), the energy transfer between the host material and the… Click to show full abstract

In order to realize single emissive white phosphorescent organic light-emitting devices (PHOLEDs) with three color phosphorescent dopants (red, green, and blue), the energy transfer between the host material and the three dopants, as well as the among the three dopants themselves, should be considered and optimized. To explore the effect of red phosphorescent dopant on the color rendering index (CRI), the authors investigate the wavelength position of the maximum emission peak from three phosphorescent dopants. The CRI and luminous efficiency of white PHOLED in which Ir(pq)2(acac) acts as the red phosphorescent dopant are found to be greater than those of devices prepared using Ir(piq)3 and Ir(btp)2(acac) as the emission spectrum has a relatively high intensity near the human perception of blue, red, and green wavelengths. Furthermore, we demonstrate that the performance of the three dopants is related to the absorption characteristics of the red phosphorescent dopant. With a maximum emission peak at 600 nm, Ir(pq)2(acac) has a higher intensity in the concave section between 550 and 600 nm seen for red and blue dopants. In addition, the long metal-to-ligand charge transfer (MLCT) absorption tail of Ir(pq)2(acac) overlaps with the emission spectra of the green dopant, enhancing emission. Such energy transfer mechanisms are confirmed to optimize white emission in the single emissive white PHOLEDs.

Keywords: phosphorescent; red phosphorescent; phosphorescent dopants; emissive white; single emissive; emission

Journal Title: Chinese Optics Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.