New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator (MZM) to alter the… Click to show full abstract
New techniques for controlling the amplitudes of two orthogonal linearly polarized light are presented. One is based on adjusting the DC voltage into a Mach–Zehnder modulator (MZM) to alter the amplitude of the light traveling on the slow axis of a fiber into the modulator with little changes in the fast-axis light amplitude. Another is based on adjusting the input DC voltages of a dual-polarization MZM operating in the reverse direction, which enables independent control of the two input orthogonal linearly polarized light amplitudes. Experimental results demonstrate that more than 30 dB difference in slow- and fast-axis light power can be obtained by controlling an MZM input DC voltage, and over 24 dB independent power adjustment for light traveling on the slow and fast axes into a dual-polarization MZM.
               
Click one of the above tabs to view related content.