LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Beam wander relieved optical switch using Bessel beams in turbulent atmosphere

Photo from wikipedia

The digital micro-mirror device (DMD)-based optical switch has the advantages of high-speed channels reallocation, miniaturization, stability, and large capacity for short reach optical communication in the datacenter. However, thermal turbulent… Click to show full abstract

The digital micro-mirror device (DMD)-based optical switch has the advantages of high-speed channels reallocation, miniaturization, stability, and large capacity for short reach optical communication in the datacenter. However, thermal turbulent atmosphere in the datacenter would cause perturbations and channel crosstalk for the optical switch. The self-healing optical beams such as the Bessel beams have the non-diffraction property to mitigate the turbulence issue. Here, we propose and demonstrate a Bessel beams enabled DMD-based optical switch to improve the stability and performance of optical communication in turbulent atmosphere. We statistically characterize the beam wanders of the Gaussian and Bessel beams in turbulent atmosphere at temperatures of 60°C and 80°C. We build the two-channel optical switch communication system and measure the bit error rate of the 15 Gbit/s on–off keying signals transmitted by the Gaussian and Bessel beams at temperatures of 60°C and 80°C, respectively. The optical switch using the Bessel beams shows lower bit error rates with weaker fluctuations compared with the Gaussian beams. The DMD-based optical switch using the Bessel beams has the potential for practical optical communication applications in the datacenter.

Keywords: optical switch; turbulent atmosphere; bessel beams; using bessel; switch using

Journal Title: Chinese Optics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.