LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analyzing OAM mode purity in optical fibers with CNN-based deep learning

Photo from academic.microsoft.com

Inspired by recent rapid deep learning development, we present a convolutional-neural-network (CNN)-based algorithm to predict orbital angular momentum (OAM) mode purity in optical fibers using far-field patterns. It is found… Click to show full abstract

Inspired by recent rapid deep learning development, we present a convolutional-neural-network (CNN)-based algorithm to predict orbital angular momentum (OAM) mode purity in optical fibers using far-field patterns. It is found that this image-processing-based technique has an excellent ability in predicting the OAM mode purity, potentially eliminating the need of using bulk optic devices to project light into different polarization states in traditional methods. The excellent performance of our algorithm can be characterized by a prediction accuracy of 99.8% and correlation coefficient of 0.99994. Furthermore, the robustness of this technique against different sizes of testing sets and different phases between different fiber modes is also verified. Hence, such a technique has a great potential in simplifying the measuring process of OAM purity.

Keywords: deep learning; purity; oam mode; mode purity; cnn based

Journal Title: Chinese Optics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.