LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Metabolic and osmoionic effects of the recombinant crustacean hyperglycemic hormone (rCHH-A) of the Pacific white shrimp Penaeus vannamei on specimens acutely exposed to extreme salinities

Photo by huage1983 from unsplash

The crustacean hyperglycemic hormone (CHH) is a multifunctional neuropeptide that plays a central role in crustacean metabolism and physiology. Experiments were conducted to examine the metabolic and osmoionic capabilities of… Click to show full abstract

The crustacean hyperglycemic hormone (CHH) is a multifunctional neuropeptide that plays a central role in crustacean metabolism and physiology. Experiments were conducted to examine the metabolic and osmoionic capabilities of the white shrimp Penaeus vannamei injected with its recombinant CHH-A (rCHH-A) peptide and acutely transferred from iso- (26 ppt) to hypo- (10 ppt) and hyper-osmotic (40 ppt) conditions. Hemolymph glucose, protein, osmoregulatory capacity (OC), and ionoregulatory capacity (IC) for sodium, chloride, potassium, and calcium were evaluated at four post-injection times (0.5, 1, 2, and 24 h). The rCHH-A peptide had hyperglycemic activity in all salinity conditions, obtaining maximum values at 1 h post-injection. However, in shrimp transferred to hyper-osmotic condition, rCHH-A caused the most significant reductions in OC (2 h), chloride IC (2 h), and total proteins (0.5-2 h) compared to the phosphate-buffered saline (PBS) control. Contrastingly, in shrimp transferred to hypo-osmotic conditions, rCHH-A decreased OC significantly from 2-24 h, strongly decreased chloride and potassium IC at 1 h post-injection, and increased total protein concentration in the hemolymph (1-2 h) when compared to PBS control. Concerning calcium, the rCHH-A injection decreased calcium IC at 10 ppt (1 h) and 26 ppt (2 h), providing insight into a potential role for CHH-A in calcium regulation. The results suggest that glucose and protein mobilization could enhance energy for osmo-ionic regulation under extreme osmotic conditions. This research study contributed to understanding crustacean endocrinology in P. vannamei and related euryhaline crustaceans. Further research should be performed to understand the osmo- and ionoregulatory mechanisms of the different CHH variants in crustaceans exposed to other stress conditions and the relationship with intermediary energy metabolism regulation.

Keywords: hyperglycemic hormone; crustacean hyperglycemic; ppt; vannamei; metabolic osmoionic; rchh

Journal Title: Latin American Journal of Aquatic Research
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.