LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stanniocalcin‑1 suppresses TGF‑β‑induced mitochondrial dysfunction and cellular fibrosis in human renal proximal tubular cells.

Photo from wikipedia

Stanniocalcin‑1 (STC1), a multifunctional glycoprotein with antioxidant and anti‑inflammatory properties, serves an important role in kidney protection. STC1 is one of the few hormones targeted to the mitochondria to regulate… Click to show full abstract

Stanniocalcin‑1 (STC1), a multifunctional glycoprotein with antioxidant and anti‑inflammatory properties, serves an important role in kidney protection. STC1 is one of the few hormones targeted to the mitochondria to regulate mitochondrial quality control by suppressing oxidative stress and mitochondrial damage. However, the mechanisms underlying the effect of STC1 remain unclear. The present study aimed to investigate the protective role of recombinant STC1 (rSTC1) in renal fibrosis and to identify the mechanisms underlying cellular fibrosis in HK2 human renal proximal tubular cells. Semi‑quantitative PCR, western blot analysis and confocal microscopy were used to detect the mRNA levels, protein levels and mitochondrial membrane potential (MMP). Mitochondrial superoxide production was evaluated using MitoSox staining. rSTC1 attenuated TGF‑β‑induced downregulation of AMP‑activated protein kinase and uncoupling protein 2 (UCP2). Treatment of HK2 cells with TGF‑β reduced the MMP and increased the production of reactive oxygen species (ROS). In addition, TGF‑β treatment upregulated fibrotic markers, such as α‑SMA and fibronectin, in HK2 cells. Treatment with rSTC1 and TGF‑β suppressed mitochondrial ROS production by recovering the MMP and reversed the upregulation of fibrotic markers in HK2 cells. The effects of rSTC1 were reversed when UCP2 expression was silenced. The present study revealed a novel role of STC1 in preventing TGF‑β induced cellular fibrosis in HK2 cells.

Keywords: renal proximal; human renal; cellular fibrosis; tgf induced; proximal tubular; fibrosis

Journal Title: International journal of molecular medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.