LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hepatitis C virus p7 induces mitochondrial depolarization of isolated liver mitochondria.

Photo by naskopi from unsplash

Hepatitis C virus (HCV)‑encoded protein p7 is a viroporin that acts as an ion channel and is indispensable for HCV particle production. Although the main target of HCV p7 is… Click to show full abstract

Hepatitis C virus (HCV)‑encoded protein p7 is a viroporin that acts as an ion channel and is indispensable for HCV particle production. Although the main target of HCV p7 is the endoplasmic reticulum, it also targets mitochondria. HCV‑infected cells show mitochondrial depolarization and ATP depletion; however, the function of HCV p7 in mitochondria is not fully understood. The present study demonstrated that treatment of isolated mouse liver mitochondria with the synthesized HCV p7 protein induced mitochondrial dysfunction. It also demonstrated that HCV p7 targeted isolated mouse liver mitochondria and induced mitochondrial depolarization. In addition, HCV p7 triggered matrix acidification and, ultimately, a decrease in ATP synthesis in isolated mitochondria. These findings indicate that targeting of mitochondria by HCV p7 in infected cells causes mitochondrial dysfunction to support HCV particle production. The present study provided evidence for the role of HCV p7 in mitochondria, and may lead to the development of novel strategies for HCV therapy.

Keywords: mitochondrial depolarization; liver mitochondria; hcv; hepatitis virus

Journal Title: Molecular medicine reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.