LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reactive oxygen species mediated oxidative stress links diabetes and atrial fibrillation

Photo from wikipedia

Diabetes is an independent risk factor for atrial fibrillation (AF); however, the underlying mechanism linking diabetes and AF remains to be clarified. The present study aimed to explore the molecular… Click to show full abstract

Diabetes is an independent risk factor for atrial fibrillation (AF); however, the underlying mechanism linking diabetes and AF remains to be clarified. The present study aimed to explore the molecular mechanism of increased reactive oxygen species (ROS) production in AF and the ROS-mediated downstream events in diabetes. Firstly, the atrial fibroblasts were isolated from the left atrium of rabbits using enzyme digestion and differential adhesion. Then, the isolated cells were identified by morphology analysis under a microscope, collagen distribution using Masson trichrome staining and vimentin by immunofluorescence. Following this, the collected atrial fibroblasts were randomly divided into 7 groups and administered with high glucose (25 mM glucose), H2O2 stimulation (100 nmol/l), glucose + apocynin (100 µg/ml), H2O2 + apocynin, glucose + H2O2, and a combination of glucose, apocynin and H2O2, as well as the negative control (NC). An MTS assay was performed to investigate cell proliferation following the different treatments, and western blotting was conducted to explore the expression of several proteins including NAD(P)H oxidative (NOX) subunits, key factors involved in mitogen-activated protein kinase (MAPK) signaling pathways and matrix metalloproteinases (MMPs). The atrial fibroblasts were spindle-shaped with one or more protuberances. Vimentin was positively expressed in collected cells under confocal laser scanning microscopy. This result indicated that the atrial fibroblasts were successfully prepared. High glucose and H2O2 stimulation significantly increased the proliferation of atrial fibroblasts and apocynin markedly attenuated the promoting effects on cell proliferation induced by high glucose and H2O2 treatment (P<0.05). Additionally, high glucose and H2O2 stimulation increased the expression of Rac1, phospho(p)-c-Jun N-terminal kinase 1, p38, p-p38 and MMP9, which was markedly decreased by the addition of apocynin (P<0.05). The mechanism associated with diabetes and AF may be attributed to oxidative stress (ROS production) derived from NOX activity, and then induced activation of the MAPK signaling pathways and MMP9 expression.

Keywords: atrial fibrillation; reactive oxygen; atrial fibroblasts; oxygen species; high glucose; glucose h2o2

Journal Title: Molecular Medicine Reports
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.