LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The hepatoprotective role of reduced glutathione and its underlying mechanism in oxaliplatin-induced acute liver injury

Photo by vedranafilipovic from unsplash

Currently, the underlying mechanism of oxaliplatin (OXA) induced live injury is unclear. In addition, there is no standard clinical treatment for OXA-induced acute liver injury (ALI). In this study, we… Click to show full abstract

Currently, the underlying mechanism of oxaliplatin (OXA) induced live injury is unclear. In addition, there is no standard clinical treatment for OXA-induced acute liver injury (ALI). In this study, we established an animal model of OXA-induced ALI, and studied the role of oxidative stress in OXA-induced ALI and the impacts of reduced glutathione (GSH) treatment on OXA-induced ALI. To establish an OXA-induced ALI model, KM mice received intraperitoneal injection of OXA (8 mg/kg) for 4 days. Serum alanine aminotransferase (ALT), aspartate aminotransferase levels (AST), hepatic pathology and oxidative stress indicators in liver tissues were analyzed. To study the impact of GSH treatment on OXA-induced ALI, mice were treated with GSH (400 mg/kg, i.p). In this ALI mouse model, ALT and AST levels were significantly increased (P<0.01). Liver pathological examination revealed varying degrees of liver cell turbidity and degeneration, even balloon-like changes and focal necrosis, and sinusoidal hemorrhage in some cells. Compared with control group, the malondialdehyde (MDA) and GSH levels were significantly increased in OXA-treated group (P<0.01), while the superoxide dismutase SOD and GSH-peroxidase levels were decreased after OXA withdrawal (P<0.01). When GSH was used to treat OXA-induced ALI mice, the pathological injury of liver tissues was alleviated, and serum ALT and AST were significantly decreased. In addition, GSH treatment could reduce the OXA-induced increase of MDA level (P<0.05) in liver tissues, but had no impact on SOD level (P>0.05). We have successfully established an OXA-induced ALI model. Using this model, we discover that oxidative stress plays an important role in OXA-induced ALI. GSH-based hepatoprotective therapy can partially inhibit oxidative stress and alleviate OXA-induced ALI.

Keywords: induced ali; model; role; injury; oxa induced; oxa

Journal Title: Oncology Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.