LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small molecule 2,3-DCPE induces S phase arrest by activating the ATM/ATR-Chk1-Cdc25A signaling pathway in DLD-1 colon cancer cells

Photo by nci from unsplash

In our previous study, it was reported that 2[[3-(2,3-dichlorophenoxy)propyl]amino]ethanol (2,3-DCPE) induces apoptosis and cell cycle arrest. The current study aimed to investigate the molecular mechanism involved in 2,3-DCPE-induced S phase… Click to show full abstract

In our previous study, it was reported that 2[[3-(2,3-dichlorophenoxy)propyl]amino]ethanol (2,3-DCPE) induces apoptosis and cell cycle arrest. The current study aimed to investigate the molecular mechanism involved in 2,3-DCPE-induced S phase arrest. The results demonstrated that 2,3-DCPE upregulated phosphorylated (p-)H2A histone family member X, a biomarker of DNA damage, in the DLD-1 colon cancer cell line. Western blotting revealed that 2,3-DCPE increased the checkpoint kinase (Chk)1 (Ser317 and Ser345) level and decreased the expression of M-phase inducer phosphatase 1 (Cdc25A) in a time-dependent manner. Subsequently, the results demonstrated that the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) inhibitors wortmannin and caffeine had no effect on the cell cycle; however, the inhibitors partially abrogated 2,3-DCPE-induced S phase arrest. Flow cytometry assays revealed that caffeine (2 mM) reduced the proportion of S phase cells from 83 to 39.6% and that wortmannin (500 nM) reduced the proportion of S phase cells from 83 to 48.2%. Furthermore, wortmannin and caffeine inhibited the 2,3-DCPE-mediated phosphorylation of Chk1 and the degradation of Cdc25A. However, these ATM/ATR inhibitors had limited effect on 2,3-DCPE-induced apoptosis. Taken together, the data of the current study indicated that 2,3-DCPE caused DNA damage in colon cancer cells and that 2,3-DCPE-induced S phase arrest was associated with the activation of the ATM/ATR-Chk1-Cdc25A pathway.

Keywords: dcpe; colon cancer; cdc25a; atm atr; phase arrest

Journal Title: Oncology Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.