LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preferential radiosensitization to glioblastoma cancer stem cell-like cells by a Hsp90 inhibitor, N-vinylpyrrolidone-AUY922

Photo by nci from unsplash

The present study examined the radiosensitization induced by a heat shock protein 90 inhibitor, N-vinylpyrrolidone (NVP)-AUY922, in CD133-positive cells in a hypoxic area of T98G spheroids. CD133-positive cells that are… Click to show full abstract

The present study examined the radiosensitization induced by a heat shock protein 90 inhibitor, N-vinylpyrrolidone (NVP)-AUY922, in CD133-positive cells in a hypoxic area of T98G spheroids. CD133-positive cells that are induced in the hypoxic microenvironment of spheroids have previously been reported to exhibit cancer stem cell-like properties. The present study used CD133-positive cells from a glioblastoma cell line (T98G) as cancer stem cell-like cells. CD133-positive and negative cells were sorted from T98G spheroids using fluorescence-activated cell sorting and used for colony formation assay. Colony formation assay results indicated that NVP-AUY922 enhanced radiosensitivity more strongly in CD133-positive cells compared with CD133-negative cells. This result showed that NVP-AUY922 was a preferential radiosensitization candidate targeting glioblastoma cancer stem cells. The mechanisms underlying radiosensitization by NVP-AUY922 are discussed in relation to the properties of cancer stem cells. Overall, HIF-1α inhibition by NVP-AUY922 may induce higher sensitization of cancer stem cells to radiation.

Keywords: radiosensitization; nvp auy922; cancer stem; cd133 positive; cancer

Journal Title: Oncology Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.