LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The FOXM1/BUB1B signaling pathway is essential for the tumorigenicity and radioresistance of glioblastoma

Accumulating evidence indicates that mitotic checkpoint serine/threonine kinase B (BUB1B) plays a critical role in multiple types of cancer. However, the biological function and molecular regulatory mechanism of BUB1B in… Click to show full abstract

Accumulating evidence indicates that mitotic checkpoint serine/threonine kinase B (BUB1B) plays a critical role in multiple types of cancer. However, the biological function and molecular regulatory mechanism of BUB1B in glioblastoma (GBM) remain unclear. In the present study, we identified that BUB1B expression was enriched in GBM tumors and was functionally required for tumor proliferation both in vitro and in vivo. Clinically, BUB1B expression was associated with poor prognosis in GBM patients and BUB1B-dependent radioresistance in GBM was decreased by targeting BUB1B via shRNAs. Mechanistically, forkhead box protein M1 (FOXM1) transcriptionally regulated BUB1B expression by binding to and then activating the BUB1B promoter. Therapeutically, we found that FOXM1 inhibitor attenuated tumorigenesis and radioresistance of GBM both in vitro and in vivo. Altogether, BUB1B promotes tumor proliferation and induces radioresistance in GBM, indicating that BUB1B could be a potential therapeutic target for GBM.

Keywords: glioblastoma; bub1b; radioresistance gbm; radioresistance; bub1b expression

Journal Title: Oncology Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.