LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The equation ${dd'+d'd=D^2}$ for derivations on C$^*$-algebras

Photo from academic.microsoft.com

Let $\mathcal{A}$ be an algebra. A linear mapping $d:\mathcal{A}\to\mathcal{A}$ is called a derivation if $d(ab)=d(a)b+ad(b)$ for each $a,b\in\mathcal{A}$. Given two derivations $d$ and $d'$ on a C$^*$-algebra $\mathcal{A}$, we prove… Click to show full abstract

Let $\mathcal{A}$ be an algebra. A linear mapping $d:\mathcal{A}\to\mathcal{A}$ is called a derivation if $d(ab)=d(a)b+ad(b)$ for each $a,b\in\mathcal{A}$. Given two derivations $d$ and $d'$ on a C$^*$-algebra $\mathcal{A}$, we prove that there exists a derivation $D$ on $\mathcal A$ such that $dd'+d'd=D^2$ if and only if $d$ and $ d' $ are linearly dependent.

Keywords: equation derivations; derivations algebras

Journal Title: Turkish Journal of Mathematics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.