LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Some properties of Riemannian geometry of the tangent bundle of Lie groups

Photo from academic.microsoft.com

We consider a bi-invariant Lie group (G, g) and we equip its tangent bundle TG with the left invariant Riemannian metric introduced in the paper of Asgari and Salimi Moghaddam.… Click to show full abstract

We consider a bi-invariant Lie group (G, g) and we equip its tangent bundle TG with the left invariant Riemannian metric introduced in the paper of Asgari and Salimi Moghaddam. We investigate Einstein-like, Ricci soliton, and Yamabe soliton structures on TG. Then we study some geometrical tensors on TG such as Cotton, Schouten, Weyl, and Bach tensors, and we also compute projective and concircular and m-projective curvatures on TG. Finally, we compute the Szabo operator and Jacobi operator on the tangent Lie group TG.

Keywords: geometry tangent; properties riemannian; lie; tangent bundle; riemannian geometry; geometry

Journal Title: Turkish Journal of Mathematics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.