LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AXES IN NON-ASSOCIATIVE ALGEBRAS

Photo from academic.microsoft.com

“Fusion rules” are laws of multiplication among eigenspaces of an idempotent. This terminology is relatively new and is closely related to axial algebras, introduced recently by Hall, Rehren and Shpectorov.… Click to show full abstract

“Fusion rules” are laws of multiplication among eigenspaces of an idempotent. This terminology is relatively new and is closely related to axial algebras, introduced recently by Hall, Rehren and Shpectorov. Axial algebras, in turn, are closely related to 3-transposition groups and Vertex operator algebras. In this paper we consider fusion rules for semisimple idempotents, following Albert in the power-associative case. We examine the notion of an axis in the non-commutative setting and show that the dimension d of any algebra A generated by a pair a, b of (not necessarily Jordan) axes of respective types (λ, δ) and (λ′, δ′) must be at most 5; d cannot be 4. If d ≤ 3 we list all the possibilities for A up to isomorphism. We prove a variety of additional results and mention some research questions at the end.

Keywords: associative algebras; axes non; non associative

Journal Title: TURKISH JOURNAL OF MATHEMATICS
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.