The construction of a connective brain begins at the earliest ages of human development. However, knowledge about individual and collective brains provided so far by research has been rarely incorporated… Click to show full abstract
The construction of a connective brain begins at the earliest ages of human development. However, knowledge about individual and collective brains provided so far by research has been rarely incorporated into Maths in Early Childhood classrooms. In spite of that, it is obvious that it is at these ages when the learning of mathematics acts as a nuclear element for decision- making, problem -solving, data- processing and the understanding of the world. From that perspective, this research aims to analyse the mathematics teaching-learning process at early ages based on connectionism, with the specific objectives being, on the one hand, to determine the features of mathematics practices which promote connections and, on the other hand, to identify different types of mathematics connections to enhance connective intelligence. The research was carried out over two consecutive academic years under an interpretative paradigm with a methodological approach combining Action Research and Grounded Theory. The results obtained allow the characterization of a prototype of a didactic sequence that promotes three types of mathematics connections for the development of connective intelligence in young children: conceptual, giving rise to links between mathematics concepts, teaching, linking mathematics concepts through an active methodology, and practical ones connecting maths with the environment.
               
Click one of the above tabs to view related content.