LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Hardy–Moser–Trudinger inequality via the transplantation of Green functions

Photo by arnosenoner from unsplash

We provide a new proof of the Hardy–Moser–Trudinger inequality and the existence of its extremals which are established by Wang and Ye ("G. Wang, and D. Ye, A Hardy–Moser–Trudinger inequality,… Click to show full abstract

We provide a new proof of the Hardy–Moser–Trudinger inequality and the existence of its extremals which are established by Wang and Ye ("G. Wang, and D. Ye, A Hardy–Moser–Trudinger inequality, Adv. Math, 230 (2012) 294–230.") without using the blow-up analysis method. Our proof is based on the transformation of functions via the transplantation of Green functions. This method enables us to compute explicitly the concentrating level of the Hardy–Moser–Trudinger functional over the normalizing concentrating sequences which is crucial to prove the existence of extremals for the Hardy–Moser–Trudinger inequality. Some comments on the applications of this approach to some other Moser–Trudinger type inequalities are given.

Keywords: hardy moser; moser trudinger; trudinger inequality; transplantation green; via transplantation

Journal Title: Communications on Pure and Applied Analysis
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.