LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two

Photo from academic.microsoft.com

This paper is devoted to the study of the initial-boundary value problem for density-dependent incompressible nematic liquid crystal flows with vacuum in a bounded smooth domain of \begin{document}$\mathbb{R}^2$\end{document} . The… Click to show full abstract

This paper is devoted to the study of the initial-boundary value problem for density-dependent incompressible nematic liquid crystal flows with vacuum in a bounded smooth domain of \begin{document}$\mathbb{R}^2$\end{document} . The system consists of the Navier-Stokes equations, describing the evolution of an incompressible viscous fluid, coupled with various kinematic transport equations for the molecular orientations. Assuming the initial data are sufficiently regular and satisfy a natural compatibility condition, the existence and uniqueness are established for the global strong solution if the initial data are small. We make use of a critical Sobolev inequality of logarithmic type to improve the regularity of the solution. Our result relaxes the assumption in all previous work that the initial density needs to be bounded away from zero.

Keywords: strong solution; global strong; liquid; incompressible flow; solution; solution incompressible

Journal Title: Discrete and Continuous Dynamical Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.