LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents

Photo by cytonn_photography from unsplash

We consider the following nonlocal critical equation \begin{document}$\begin{equation} -\Delta u = (I_{\mu_1}\ast|u|^{2_{\mu_1}^\ast})|u|^{2_{\mu_1}^\ast-2}u +(I_{\mu_2}\ast|u|^{2_{\mu_2}^\ast})|u|^{2_{\mu_2}^\ast-2}u,\; x\in\mathbb{R}^N, \;\;\;\;\;\;\;(1) \end{equation}$ \end{document} where \begin{document}$ 0 if \begin{document}$ N = 3 $\end{document} or \begin{document}$ 4 $\end{document}… Click to show full abstract

We consider the following nonlocal critical equation \begin{document}$\begin{equation} -\Delta u = (I_{\mu_1}\ast|u|^{2_{\mu_1}^\ast})|u|^{2_{\mu_1}^\ast-2}u +(I_{\mu_2}\ast|u|^{2_{\mu_2}^\ast})|u|^{2_{\mu_2}^\ast-2}u,\; x\in\mathbb{R}^N, \;\;\;\;\;\;\;(1) \end{equation}$ \end{document} where \begin{document}$ 0 if \begin{document}$ N = 3 $\end{document} or \begin{document}$ 4 $\end{document} , and \begin{document}$ N-4\leq\mu_1,\mu_2 if \begin{document}$ N\geq5 $\end{document} , \begin{document}$ 2_{\mu_{i}}^\ast: = \frac{N+\mu_i}{N-2}(i = 1,2) $\end{document} is the upper critical exponent with respect to the Hardy-Littlewood-Sobolev inequality, and \begin{document}$ I_{\mu_i} $\end{document} is the Riesz potential \begin{document}$ \begin{equation*} I_{\mu_i}(x) = \frac{\Gamma(\frac{N-\mu_i}{2})}{\Gamma(\frac{\mu_i}{2})\pi^{\frac{N}{2}}2^{\mu_i}|x|^{N-\mu_i}}, \; i = 1,2, \end{equation*} $\end{document} with \begin{document}$ \Gamma(s) = \int_{0}^{\infty}x^{s-1}e^{-x}dx $\end{document} , \begin{document}$ s>0 $\end{document} . Firstly, we prove the existence of the solutions of the equation (1). We also establish integrability and \begin{document}$ C^\infty $\end{document} -regularity of solutions and obtain the explicit forms of positive solutions via the method of moving spheres in integral forms. Finally, we show that the nondegeneracy of the linearized equation of (1) at \begin{document}$ U_0,V_0 $\end{document} when \begin{document}$ \max\{\mu_1,\mu_2\}\rightarrow0 $\end{document} and \begin{document}$ \min\{\mu_1,\mu_2\}\rightarrow N $\end{document} , respectively.

Keywords: document; document begin; end document; begin document; equation

Journal Title: Discrete and Continuous Dynamical Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.