LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations

Photo by kmitchhodge from unsplash

In this work, we consider the three-dimensional viscoelastic fluid flow equations, arising from the motion of Kelvin-Voigt fluids in bounded and unbounded domains. We investigate the global solvability results, asymptotic… Click to show full abstract

In this work, we consider the three-dimensional viscoelastic fluid flow equations, arising from the motion of Kelvin-Voigt fluids in bounded and unbounded domains. We investigate the global solvability results, asymptotic behavior and also address some control problems of such viscoelastic fluid flow equations with "fading memory" and "memory of length \begin{document}$ \tau $\end{document} ". A local monotonicity property of the linear and nonlinear operators and a localized version of the Minty-Browder technique are used to obtain global solvability results. Since we are not using compactness arguments in the proofs, the global solvability results are also valid in unbounded domains like Poincare domains. We also remark that using an \begin{document}$ m $\end{document} -accretive quantization of the linear and nonlinear operators, one can establish the existence and uniqueness of strong solutions for the Navier-Stokes-Voigt equations and avoid the tedious Galerkin approximation scheme. We examine the asymptotic behavior of the stationary solutions and also establish the exponential stability results. Finally, under suitable assumptions on the Galerkin basis, we consider the controlled Galerkin approximated 3D Kelvin-Voigt fluid flow equations. Using the Hilbert uniqueness method combined with Schauder's fixed point theorem, the exact controllability of the finite dimensional Galerkin approximated system is established.

Keywords: galerkin; kelvin voigt; solvability; three dimensional; global solvability

Journal Title: Evolution Equations and Control Theory
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.