Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is… Click to show full abstract
Vehicle routing problem (VRP) is a typical and important combinatorial optimization problem, and is often involved with complicated temporal and spatial constraints in practice. In this paper, the VRP is formulated as an optimization model for minimizing the number of vehicles and the total transportation cost subject to constraints on loading plan, service time and weight capacity. The transportation cost consists of the rent charge of vehicles, fuel cost, and carbon tax. Owing to complexity of the built model, it is divided into two subproblems by a two-stage optimization approach: at the first stage, the number of vehicles is minimized, then the routing plan is optimized at the second stage. For solving the sequential subproblems, two correlated genetic algorithms are developed, which share the same initial population to reduce their computational costs. Numerical results indicate that the developed algorithms are efficient, and a number of important managerial insights are revealed from the model.
               
Click one of the above tabs to view related content.